510 research outputs found

    Bayesian Approaches to Infer the Physical Properties of Star-Forming Galaxies at Cosmic Dawn

    Get PDF
    In this thesis, I seek to advance our understanding of galaxy formation and evolution in the early universe. Using the largest single project ever conducted by the Hubble Space Telescope (the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, CANDELS) I use deep and wide broadband photometric imaging to infer the physical properties of galaxies from z=8.5 to z=1.5. First, I will present a study that extends the relationship between the star-formation rates (SFRs) and stellar masses (M*) of galaxies to 3.5<z<6.5, improves the constraints on the distant star-formation histories, and resolves an outstanding puzzle in the redshift evolution of the specific SFR (sSFR = SFR/M*). To improve determinations of distant galaxy SFRs, I then place new constrains on how dust is attenuated in galaxies. I calculate the Bayesian evidence for galaxies under different assumptions of their underlying dust-attenuation law. By modeling galaxy ultraviolet-to-near-IR broadband CANDELS data I produce Bayesian evidence towards the dust law in individual galaxies that is confirmed by their observed IR luminosities. Moreover, I find a tight correlation between the strength of attenuation in galaxies and their dust law, a relation reinforced by the results from radiative transfer simulations. Finally, I use the Bayesian methods developed in this thesis to study the number density of SFR in galaxies from z=8 to z=4, and resolve the current disconnect between its evolution and that of the stellar mass function. In doing so, I place the first constraints on the dust law of z>4 galaxies, finding it obeys a similar relation as found at z~2. I find a clear excess in number density at high SFRs. This new SFR function is in better agreement with the observed stellar mass functions, the few to-date infrared detections at high redshifts, and the connection to the observed distribution of lower redshift infrared sources. Together, these studies greatly improve our understanding of the galaxy star-formation histories, the nature of their dust attenuation, and the distribution of SFR among some of the most distant galaxies in the universe

    Evidence for Reduced Specific Star Formation Rates in the Centers of Massive Galaxies at z = 4

    Get PDF
    We perform the first spatially-resolved stellar population study of galaxies in the early universe (z = 3.5 - 6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) imaging dataset over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5 - 6.5 from a parent sample of ~ 8000 photometric-redshift selected galaxies from Finkelstein et al. (2015). We first examine galaxies at 3.5< z < 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey (HUGS) which covers the 4000A break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially-resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with the high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ~ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ~ 5 - 6, contrary to massive galaxies at z < 4.Comment: Accepted to ApJ, 20 pages, 15 figure

    Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    Get PDF
    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant Universe. Here, we model the spectral energy distributions (SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, LTIR/LUVL_{\text{TIR}}/L_{\text{UV}}) and UV slope (β\beta). We generalize the shape of the dust law with an empirical model, Aλ,δ=E(BV) kλ (λ/λV)δA_{\lambda,\delta}=E(B-V)\ k_\lambda\ (\lambda/\lambda_V)^\delta where kλk_\lambda is the dust law of Calzetti et al. (2000), and show that there exists a correlation between the color excess E(BV){E(B-V)} and tilt δ\delta with δ=(0.62±0.05)log(E(BV)){\delta=(0.62\pm0.05)\log(E(B-V))}+ (0.26 ± 0.02){(0.26~\pm~0.02)}. Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star-formation rate, or β\beta. The change in the dust law with color excess is consistent with a model where attenuation is caused by by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher (z>3z>3) redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap

    CLEAR I: Ages and Metallicities of Quiescent Galaxies at 1.0<z<1.8\mathbf{1.0 < z < 1.8} Derived from Deep Hubble Space Telescope Grism Data

    Full text link
    We use deep \textit{Hubble Space Telescope} spectroscopy to constrain the metallicities and (\editone{light-weighted}) ages of massive (logM/M10\log M_\ast/M_\odot\gtrsim10) galaxies selected to have quiescent stellar populations at 1.0<z<1.81.0<z<1.8. The data include 12--orbit depth coverage with the WFC3/G102 grism covering \sim 8,000<λ<11,5008,000<\lambda<11,500~\AA\, at a spectral resolution of R210R\sim 210 taken as part of the CANDELS Lyman-α\alpha Emission at Reionization (CLEAR) survey. At 1.0<z<1.81.0<z<1.8, the spectra cover important stellar population features in the rest-frame optical. We simulate a suite of stellar population models at the grism resolution, fit these to the data for each galaxy, and derive posterior likelihood distributions for metallicity and age. We stack the posteriors for subgroups of galaxies in different redshift ranges that include different combinations of stellar absorption features. Our results give \editone{light-weighted ages of tz1.1=3.2±0.7t_{z \sim 1.1}= 3.2\pm 0.7~Gyr, tz1.2=2.2±0.6t_{z \sim 1.2}= 2.2\pm 0.6~Gyr, tz1.3=3.1±0.6t_{z\sim1.3}= 3.1\pm 0.6~Gyr, and tz1.6=2.0±0.6t_{z\sim1.6}= 2.0 \pm 0.6~Gyr, \editone{for galaxies at z1.1z\sim 1.1, 1.2, 1.3, and 1.6. This} implies that most of the massive quiescent galaxies at 168168\% of their stellar mass by a redshift of z>2z>2}. The posteriors give metallicities of \editone{Zz1.1=1.16±0.29Z_{z\sim1.1}=1.16 \pm 0.29~ZZ_\odot, Zz1.2=1.05±0.34Z_{z\sim1.2}=1.05 \pm 0.34~ZZ_\odot, Zz1.3=1.00±0.31Z_{z\sim1.3}=1.00 \pm 0.31~ZZ_\odot, and Zz1.6=0.95±0.39Z_{z\sim1.6}=0.95 \pm 0.39~ZZ_\odot}. This is evidence that massive galaxies had enriched rapidly to approximately Solar metallicities as early as z3z\sim3.Comment: 32 pages, 23 figures, Resubmited to ApJ after revisions in response to referee repor

    ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4

    Get PDF
    We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize 7000\sim7000 galaxies from 1<z<41<z<4 into 9090 groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with R50R\sim 50 resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000\AA\ break, D(4000)D(4000), we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest Hα\alpha emission (EWREST40EW_{\rm REST}\sim40\AA) compared to more typical star-forming composite SEDs at log10(M/M)10.5\log_{10}(M/M_\odot)\sim10.5 (EWREST80EW_{\rm REST}\sim80\AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from z3z\sim3 to z1z\sim1, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at z1.5z\lesssim1.5. We calculate average quenching timescales of 1.6 Gyr at z1.5z\sim1.5 and 0.9 Gyr at z2.5z\sim2.5 and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since z2z\sim2.Comment: Accepted for publication in The Astrophysical Journa

    An Increasing Stellar Baryon Fraction in Bright Galaxies at High Redshift

    Get PDF
    Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately M*_UV ~ -21. We investigate this apparent non-evolution by examining a sample of 178 bright, M_UV < -21 galaxies at z=4 to 7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that M*_UV galaxies at z=4-7 have similar stellar masses of log(M/Msol)=9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z=4-7 are less massive and have younger inferred ages than similarly bright galaxies at z=2-3, even though the two populations have similar star formation rates and levels of dust attenuation. We match the abundances of these bright z=4-7 galaxies to halo mass functions from the Bolshoi Lambda-CDM simulation to estimate the halo masses. We find that the typical halo masses in ~M*_UV galaxies decrease from log(M_h/Msol)=11.9 at z=4 to log(M_h/Msol)=11.4 at z=7. Thus, although we are studying galaxies at a similar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in units of the cosmic mean Omega_b/Omega_m rises from 5.1% at z=4 to 11.7% at z=7; this evolution is significant at the ~3-sigma level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.Comment: Accepted to ApJ. 15 pages, 5 figures, 6 table

    The Evolution of the Galaxy Stellar Mass Function at z= 4-8: A Steepening Low-mass-end Slope with Increasing Redshift

    Get PDF
    We present galaxy stellar mass functions (GSMFs) at z=z= 4-8 from a rest-frame ultraviolet (UV) selected sample of \sim4500 galaxies, found via photometric redshifts over an area of \sim280 arcmin2^2 in the CANDELS/GOODS fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data yet-to-date and the relatively large volume allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-frame UV absolute magnitude at 1500 \AA\ (MUVM_{\rm UV}) and logarithmic stellar mass (logM\log M_*) that holds for galaxies with log(M/M)10\log(M_*/M_{\odot}) \lesssim 10. We use simulations to validate our method of measuring the slope of the logM\log M_*-MUVM_{\rm UV} relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z=z= 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the logM\log M_*-MUVM_{\rm UV} distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from α=1.550.07+0.08\alpha=-1.55^{+0.08}_{-0.07} at z=4z=4 to α=2.250.35+0.72\alpha=-2.25^{+0.72}_{-0.35} at z=8z=8. The inferred stellar mass density, when integrated over M=108M_*=10^8-1013M10^{13} M_{\odot}, increases by a factor of 102+3010^{+30}_{-2} between z=7z=7 and z=4z=4 and is in good agreement with the time integral of the cosmic star formation rate density.Comment: 27 pages, 17 figures, ApJ, in pres

    Stellar Properties of z ~ 8 Galaxies in the Reionization Lensing Cluster Survey

    Full text link
    Measurements of stellar properties of galaxies when the universe was less than one billion years old yield some of the only observational constraints of the onset of star formation. We present here the inclusion of \textit{Spitzer}/IRAC imaging in the spectral energy distribution fitting of the seven highest-redshift galaxy candidates selected from the \emph{Hubble Space Telescope} imaging of the Reionization Lensing Cluster Survey (RELICS). We find that for 6/8 \textit{HST}-selected z8z\gtrsim8 sources, the z8z\gtrsim8 solutions are still strongly preferred over zz\sim1-2 solutions after the inclusion of \textit{Spitzer} fluxes, and two prefer a z7z\sim 7 solution, which we defer to a later analysis. We find a wide range of intrinsic stellar masses (5×106M5\times10^6 M_{\odot} -- 4×1094\times10^9 MM_{\odot}), star formation rates (0.2-14 Myr1M_{\odot}\rm yr^{-1}), and ages (30-600 Myr) among our sample. Of particular interest is Abell1763-1434, which shows evidence of an evolved stellar population at z8z\sim8, implying its first generation of star formation occurred just <100< 100 Myr after the Big Bang. SPT0615-JD, a spatially resolved z10z\sim10 candidate, remains at its high redshift, supported by deep \textit{Spitzer}/IRAC data, and also shows some evidence for an evolved stellar population. Even with the lensed, bright apparent magnitudes of these z8z \gtrsim 8 candidates (H = 26.1-27.8 AB mag), only the \textit{James Webb Space Telescope} will be able further confirm the presence of evolved stellar populations early in the universe.Comment: 8 pages, 3 figures, 2 table
    corecore